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Glossary of Terms 
 

AerialWaste dataset: An open-source dataset consisting of high-resolution aerial images of waste dump 

locations, primarily from the Lombardy region in Italy. 

AGEA orthophotos: High-resolution images captured from an airborne campaign by the Italian Agriculture 

Development Agency, used in the AerialWaste dataset.  

Artificial intelligence: The simulation of human intelligence processes by machines, especially computer 

systems, to perform tasks such as visual perception, speech recognition, decision-making and language 

translation. 

Computer vision: The process by which artificial intelligence systems analyse and interpret visual data such 

as images and videos. 

Convolutional neural network (CNN): A class of deep neural networks commonly used to analyse visual 

imagery. 

Deep learning: A subset of machine learning that involves neural networks with many layers, capable of 

learning from large amounts of data. 

Feature pyramid network (FPN): A neural network architecture that improves performance in image 

recognition tasks by utilizing features at multiple levels. 

Geographical information systems (GIS): Systems designed to capture, store, analyse and display 

geographic data, enabling users to visualize, interpret and understand spatial relationships in various 

contexts. 

Google Maps Static API: A service that allows developers to embed Google Maps images into web pages 

without requiring JavaScript. 

Ground truth data: Data collected on-site and used as a reference to validate the results of predictive 

models. 

Image classification: The process of categorizing and labelling groups of pixels or vectors within an image 

based on specific rules. 

ImageNet: A large visual database used for training image recognition software. 
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Machine learning: A subset of artificial intelligence that enables systems to learn and improve from 

experience without being explicitly programmed. It focuses on the development of algorithms that allow 

computers to learn from and make predictions or decisions based on data. 

Precision: A metric that measures the accuracy of positive predictions, defined as the ratio of true positives 

to the sum of true positives and false positives. 

Recall: A metric that measures the ability to identify all relevant instances, defined as the ratio of true 

positives to the sum of true positives and false negatives. 

ResNet50: A CNN architecture with 50 layers, known for its use of residual connections to improve training 

and performance. 

Single shot detector: An object detection model that is able to detect objects in images in a single forward 

pass of the network. 

Support vector machine: A supervised learning model used for classification and regression analysis. 

Transfer learning: A machine learning technique where a pre-trained model is adapted to perform a different 

but related task. 

Validation metrics: Measures used to evaluate the performance of a model, including precision, recall and 

F1 score. 

WorldView-3 satellite: A high-resolution commercial earth observation satellite, providing images used in 

remote sensing applications. 

You Only Look Once (YOLO): A real-time object detection system that detects objects in images in a 
single evaluation. 
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1 Overview 
 
This project aims to identify illegal waste dumping sites in Guatemala through state-of-the-art geographical 

information systems (GIS), computer vision and machine learning methods. Co led by the UNDP Guatemala 

Accelerator Lab1  and UNDP Istanbul Centre for Private Sector in Development (ICPSD) SDG AI Lab2,  and in 

collaboration with Politecnico di Milano (Polimi)3,  the project uses satellite imagery analysis to facilitate 

efficient and cost-effective monitoring of dumpsites. This joint effort aligns with the strategic goals of the 

Guatemala National Development Plan and Country Priorities.

 
1 UNDP Accelerator Labs, https://undp.org/acceleratorlabs 
2 SDG AI Lab, https://sdgailab.org. 
3 Politecnico di Milano (Polimi), https://polimi.it. 

Photo: Envato / Mehaniq4 1 
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2 Background 
 
Guatemala is actively addressing the environmental challenges posed by the management of solid waste at 

the municipal level, as outlined in its National Development Plan and Country Priorities. The Ministry of 

Environment and Natural Resources and UNDP Guatemala are making efforts to establish baselines and 

indicators to understand and measure the impact of harmful waste in areas of biological importance, 

particularly in critical fluvial and marine-coastal zones like the Motagua River. This river, the largest in 

Guatemala, is of significant concern as it transports a vast amount of human-made waste to the Atlantic 

Ocean, leading to a geopolitical crisis with Honduras.4  

To combat this, UNDP Guatemala experimented with digital technologies to enhance the design and 

implementation of solid waste management strategies. The UNDP Accelerator Lab is at the forefront of this 

initiative, exploring innovative computer vision tools applied on diverse data sources such as land surface 

temperature and high-resolution satellite imagery. Advanced GIS and machine learning techniques, 

particularly convolutional neural networks (CNNs), can help speed up the identification of illegal dumping 

sites and avoid the cost and time of traditional waste site monitoring methods, which are common constraints 

for developing countries. 

 

2.1 Related work 
 
In the realm of waste detection using remote sensing data, significant progress has been made over the 

years, with a notable shift from human interpretation of aerial images to the application of advanced 

computational techniques. Early efforts in the 1970s and 1980s, like those by Garofalo and Wobber5 and 

Lyon,6 focused on using aerial photos to analyse waste distribution and document landfill locations using 

historical images. 

A significant leap occurred in 2017 with the integration of machine learning techniques. Selani7 achieved 

85.16 percent accuracy in classifying high-resolution WorldView-2 multispectral images into categories 

including waste types using a support vector machine. This study highlighted the varying significance of 

different spectral bands in identifying various waste categories. Similarly, Angelino et al.8 employed satellite 

images in 2018 to identify illegal landfills in southern Italy using photo-interpretation by experts, 

 
4 Jeff Abbott, “Guatemala’s rivers of garbage”, The Progressive, 16 August 2023. 
5 Donald Garofalo and Frank J. Wobber, “Solid waste and remote sensing”, Photogrammetric Engineering, vol. 40 (1974), pp. 45–59.  
6 John Grimson Lyon, “Use of maps, aerial photographs, and other remote sensor data for practical evaluations of hazardous waste 
sites”, Photogrammetric Engineering and Remote Sensing, vol. 53 (1987), pp. 515–519. 
7 Lungile Selani, “Mapping illegal dumping using a high resolution remote sensing image: Case study: Soweto Township in South 
Africa”, PhD dissertation, University of the Witwatersrand, 2017. 
8 Cesario Vincenzo Angelino et al., “A case study on the detection of illegal dumps with GIS and remote sensing images”, in Earth 
Resources and Environmental Remote Sensing/GIS Applications IX, vol. 10790 (SPIE Remote Sensing, 2018). 
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complemented with a multi-feature detection algorithm. They also performed a multi-temporal analysis using 

satellite images, which allowed for tracking the evolution of landfills. 

More recent advancements have involved deep learning models. Abdukhamet9 applied state-of-the-art deep 

learning models for landfill detection in satellite images of Shanghai district, treating the problem as an object 

detection task. Using models like RetinaNet10 with DenseNet backbone11, he achieved 84.7 percent average 

precision in identifying waste sites. Similarly, Youme et al.12 used drone images and a single shot detector 

object detection model to detect dumped waste. In 2021, Torres and Fraternali13 presented a new solution 

for image classification on high-resolution red-green-blue (RGB) satellite and aerial imagery in Italy using the 

AerialWaste dataset. This dataset comprised images from the WorldView-3 satellite with a spatial resolution 

of approximately 30 cm, Google Earth images with a resolution of about 50 cm, and AGEA orthophotos with 

a resolution of approximately 20 cm. They employed a ResNet50 architecture enhanced with a feature 

pyramid network (FPN), achieving a precision of 0.88 and a recall of 0.87 on this dataset. 

Besides imagery, GIS and structured data have also been used for waste detection. Whether in isolation, as 

shown by Jordá-Borrell et al.,14 or in combination with remote sensing analysis, as done by Biotto et al.15 and 

again by Silvestri and Omri16, socioeconomic data, land-use maps and geographic characteristics can help 

create predictive models for illegal landfill locations, revealing that such sites are often non-randomly 

distributed and concentrated in areas with certain predictive factors. Other notable efforts in detecting illegal 

debris dumping were carried out by UNDP Türkiye in collaboration with a private parafoil drone firm. They 

evaluated the effectiveness of parafoil drones in identifying the location and size of debris in the 

Kahramanmaraş Metropolitan Municipality, Türkiye. The study demonstrated that parafoil drones can serve 

as cost-effective and environmentally friendly alternatives to traditional remote sensing devices, such as 

regular drones, especially for monitoring larger areas 17 . These approaches can potentially improve the 

accuracy of existing remote sensing models. 

 
9 Shynggys Abdukhamet, “Landfill detection in satellite images using deep learning”, PhD dissertation, Shanghai Jiao Tong University, 
2019. 
10 Tsung-Yi Lin et al., “Focal loss for dense object detection”, in 2017 IEEE International Conference on Computer Vision (ICCV) (2017). 
11 Gao Huang et al., “Densely connected convolutional networks”, in 2017 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) (2017). 
12 Ousmane Youme et al., “Deep learning and remote sensing: Detection of dumping waste using UAV”, Procedia Computer Science, 
vol. 185 (2021), pp. 361–369. 
13 Rocio Nahime Torres and Piero Fraternali, “Learning to identify illegal landfills through scene classification in aerial images”, Remote 
Sensing, vol. 13, No. 22 (2021), p. 4520. 
14 Rosa Jordá-Borrell, Francisca Ruiz-Rodríguez and Ángel Luis Lucendo-Monedero, “Factor analysis and geographic information 
system for determining probability areas of presence of illegal landfills”, Ecological Indicators, vol. 37 (2014), pp. 151–160. 
15 Giancarlo Biotto et al., “GIS, multi-criteria and multi-factor spatial analysis for the probability assessment of the existence of illegal 
landfills”, International Journal of Geographical Information Science, vol. 23 (2009), pp. 1233–1244. 
16 Sonia Silvestri and Mohamed Omri, “A method for the remote sensing identification of uncontrolled landfills: Formulation and 
validation”, International Journal of Remote Sensing, vol. 2 (2008), pp. 975–989. 
17 Ceyda Alpay, “Revolutionizing debris tracking: Using parafoil drones in Türkiye’s earthquake aftermath”, UNDP Türkiye (United 
Nations Development Programme, 22 February 2024). Available at https://undp.org/turkiye/blog/revolutionizing-debris-tracking-using-
parafoil-drones-turkiyes-earthquake-aftermath. 

https://undp.org/turkiye/blog/revolutionizing-debris-tracking-using-parafoil-drones-turkiyes-earthquake-aftermath
https://undp.org/turkiye/blog/revolutionizing-debris-tracking-using-parafoil-drones-turkiyes-earthquake-aftermath
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3 Key objectives 
 

3.1 Research questions 
 
The primary aim is to explore the use of machine learning to help illegal landfill monitoring in Guatemala.  

The key objectives are twofold:  

• Develop an effective machine learning model for illegal landfill monitoring in Guatemala. 

• Utilize cost-efficient satellite imagery to implement the monitoring model. 

 

For this, state-of-the-art approaches are prioritized with the possibility of using transfer learning, which 

implies using model knowledge from other geographical areas. The first objective is to determine which 

machine learning algorithms are capable of accurately detecting illegal landfill sites across diverse 

geographical and environmental conditions within Guatemala. The second objective is to explore the 

utilization of insights from other locations, such as Italy, within the Guatemalan context, while acknowledging 

the challenges associated with working with suboptimal data. The third objective is to find a balance between 

the quality, quantity and cost-effectiveness of aerial images employed in the monitoring process. 

 

3.2 Key steps 
 
To achieve the aforementioned objectives, several key steps have been identified. First, the development 

and refinement of machine learning models will be conducted using combined datasets from Italy’s 

AerialWaste and ground truth data from Guatemala. Second, a thorough methodological exploration and 

literature review will be undertaken to enhance understanding of applicable methodologies. Third, a strategy 

will be implemented utilizing Google API images18 as a primary data source, aimed at creating a scalable and 

cost-effective solution for illegal landfill monitoring. 

 

3.3 Deliverables 
 
The project aims to deliver several tangible outcomes. These include the development of an image 

classification model tailored for detecting dumping sites, the establishment of a sandbox environment for the 

validation and updating of models, the creation of a knowledge product derived from the project’s findings, 

and the provision of technical documentation to facilitate the scaling up of proven models. 

 

 
18 Google, “Google Maps Static API”. Available at https://developers.google.com/maps/documentation/maps-static/overview (accessed 
on 30 May 2024). 

https://developers.google.com/maps/documentation/maps-static/overview
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4 Data 
 

4.1 AerialWaste dataset 
 

The AerialWaste dataset19 that was used to pre-train the classification model is an open-source Italian aerial 

dataset developed by the Politecnico di Milano (Polimi). The AerialWaste dataset is part of the PERIVALLON 

project, funded by the European Union H2020 Programme, which aims to protect the European territory 

from organized environmental crime through intelligent threat detection tools. It comprises 3,478 positive 

and 6,956 negative samples. This dataset emerges from a remote sensing data-collection campaign 

focusing on the Lombardy region in Italy. The dataset is composed of three different types of imagery data: 

 

• AGEA orthophotos: Images from an airborne campaign by the Italian Agriculture Development 

Agency, captured in 2018 over Lombardy, Italy. These images have a high spatial resolution of 

approximately 20 cm and are presented in a standard size of about 1000 × 1000 pixels. 

• WorldView-3 satellite (2021): Images collected offer a slightly lower spatial resolution of around 

30 cm, with each image measuring approximately 700 × 700 pixels. 

• Google Earth imagery: Accessed via Google API, these images have a spatial resolution of about 

50 cm and are upscaled to a uniform size of 1000 × 1000 pixels. 

 

The dataset was created by experts from the Environmental Protection Agency of Lombardy across 105 

municipalities. Negative samples, approximately double the count of positive ones, were randomly selected 

from the same municipalities. Figure 1 shows an example of a positive sample. 

 
19 Rocio Nahime Torres and Piero Fraternali, “AerialWaste dataset for landfill discovery in aerial and satellite images”, Scientific Data, 
vol. 10 (2023), p. 63. 
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Figure 1: An example of a positive sample from the AerialWaste dataset showing an aerial view of a waste 

dump location 

 

4.2 Ground truth data (Guatemala) 
 
The Government of Guatemala has compiled a comprehensive dumpsite dataset featuring data collected 

over several years across the entire country, as seen in Table 1. This process involves personnel visiting 

various sites, identifying dumpsites and recording their coordinates. The dataset we used encompasses 

around 2,000 locations collected in 2021 and 2022, formatted as a CSV file. Each dataset contains the 

following attributes: department, municipality, location description, latitude and longitude. To control the 

visual quality of the sample we perform a visual inspection, where high-resolution imagery from Google Maps 

is used to verify if the dumpsites are visible or not. The refined dataset includes 700 negative points (locations 

without dumpsites) and 340 positive points (locations with visible dumpsites). Within the positive points, the 

dataset further differentiates between evident and non-evident dumpsites based on the ease of visual 

detection. Specifically, there are 154 evident samples, where the dumpsites are clearly visible, and 186 non-

evident samples, where it is difficult to discern the presence of a dumpsite. 

For illustrative examples of this visual inspection process, refer to the appendix of this paper. The appendix 

contains a series of images selected at random showing locations that were marked as positive for illegal 

dumpsites in 2022 but lacked visible evidence in the satellite imagery. They were thus not incorporated in 

our dataset. 
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Table 1: Dumpsites shared by the Ministry of Environment and Natural Resources (MARN)  

 

Name Source Year Data points 

Illegal Dumpsites MARN 2016 90 

Illegal Dumpsites MARN 2017 140 

Illegal Dumpsites MARN 2021 1,620 

Illegal Dumpsites MARN 2022 1,349 

 

4.3 Image dataset (Guatemala) 
 
Google Maps Static API20 was used to collect a comprehensive set of aerial images for both positive and 

negative sample locations within Guatemala. Each image captured through the data pipeline has a size of 

1000 pixels, with an approximate spatial resolution (ground sampling distance) of 30 cm and RGB bands. An 

example of a positive sample can be seen in Figure 2. Two distinct versions of the image dataset have been 

created. The first version focuses on ‘easy positives’, which comprises samples where the dumpsites are 

readily evident in the imagery. The second version includes a broader range of samples, encompassing both 

the evident and the more challenging, non-evident dumpsites. Although this version presents a greater 

challenge in terms of identifying dumpsites due to their less obvious nature, it offers a larger and more 

diverse set of samples. 

 

Figure 2: An example of a positive sample from the Guatemala dataset 

 
20 Google, “Google Maps Static API”. Available at https://developers.google.com/maps/documentation/maps-static/overview 
(accessed on 30 May 2024). 

https://developers.google.com/maps/documentation/maps-static/overview
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5 Methodology 
 
The methodology was strongly influenced by the previous achievements of Polimi21. 

 

5.1 Model architecture 
 
ResNet50 is a CNN architecture composed of 50 layers, designed to leverage residual connections for 

improved training and performance in image recognition tasks. The binary classifier exploits ResNet50 

(initialized with ImageNet weights) as the network backbone and augments it with an FPN architecture.22 

 

          

Figure 3. Example images and classification scores for illegal landfill detection. C1–C5 represent the different 

convolutional layers of the ResNet50 backbone; M2–M5 represent feature maps at different stages in the 

top-down pathway, typically part of a feature pyramid network (FPN); Concat is concatenation; P2–P5 are 

the output feature maps from each stage of the FPN after processing operations; GAP is global average 

pooling; Flatten converts the feature map into a one-dimensional vector for classification or further 

processing. 

 
21 Corrado Fasana and Samuele Pasini, “Learning to detect illegal landfills in aerial images with scarce labeling data”, PhD dissertation, 
Politecnico di Milano, 2022. See also Rocio Nahime Torres and Piero Fraternali, “Learning to identify illegal landfills through scene 
classification in aerial images,” Remote Sensing, vol. 13, No. 22 (2021), p. 4520.  
22 Rocio Nahime Torres and Piero Fraternali, “AerialWaste: A dataset for illegal landfill discovery in aerial images”, AerialWaste (2022). 
Available at https://aerialwaste.org/.  

https://aerialwaste.org/
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The FPN architecture23 improves performance in image classification when different scales are considered. 

The FPN exploits different semantic levels by combining low-resolution semantically strong features with 

high-resolution semantically weaker ones. This is realized by complementing the bottom-up feature 

extraction path typical of CNNs with a top-down path that merges features at multiple levels. 

 

5.2 Transfer learning on Guatemala dataset 
 
To train the model for the Guatemala data, the ResNet50 parameters are frozen, in a process called transfer 

learning. Transfer learning is a machine learning technique where a model developed for a specific task is 

reused as the starting point for a model on a second task. Initially, the model uses ResNet50 as the backbone, 

which is a deep CNN pre-trained on ImageNet, a large visual database used for image recognition tasks. 

ImageNet training gives the model a solid foundation in recognizing various features in images, such as 

textures, shapes and patterns. The model is then trained on the AerialWaste dataset for identifying waste 

dumps, learning specific features like size and texture. In the final stage, it adapts to Guatemalan conditions 

using our dataset, retaining the core structure and knowledge from previous training. 

 

5.3 Dataset sampling 
 
Our dataset is divided into two main subsets: the training set and the validation set. We allocate 80 percent 

of the data to the training set and 20 percent to the validation set. This split is achieved through random 

sampling, ensuring that each subset is a representative sample of the overall dataset. The limited number of 

positive samples (340) poses a significant challenge, making the training process prone to overfitting. Given 

the small size of the training set, removing a higher proportion of positive samples for validation would 

exacerbate the problem. We thus do not use a test set for the validation process. The training pipeline 

includes transformations applied directly to the input images. These transformations include random vertical 

and horizontal flipping. They are applied on the training data, allowing for a more robust training process by 

simulating various real-world conditions that the model might encounter when analysing aerial images. This 

approach helps in improving the generalization capability of the model when applied to new cases. 

 

5.4 Validation metrics: Precision, recall and F1 score 
 
Given the imbalance in our dataset, with a predominance of negative samples over positive ones, overall 

accuracy can be misleading. To effectively assess the performance of our model, we use precision, recall 

and F1 score. These metrics are particularly suitable for datasets with an imbalanced class distribution, 

 
23 Tsung-Yi Lin et al., “Feature pyramid networks for object detection”, in 2017 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) (2017), pp. 936–944. 
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providing a more accurate reflection of the model’s ability to correctly identify positive cases (illegal 

dumpsites) amid a large number of negatives (non-dumpsites). 

Precision quantifies the accuracy of the model in predicting positive samples. In essence, it measures the 

proportion of correctly predicted positive observations (true positives) to the total predicted positives (true 

positives and false positives). This metric reflects the model’s capability to correctly identify actual dumpsites, 

minimizing the false alarms (false positives). High precision implies that the model is reliable in its positive 

predictions. The precision score is calculated as follows: 

 

                                                                        True positives 

                               Precision =                                                                                                     (1)                                                                                       

                             

                                                            True positives + False positives 

 

 

Recall, also known as sensitivity, assesses the model’s ability to identify all relevant instances of illegal 

dumpsites. It calculates the ratio of correctly predicted positive observations (true positives) to all positive 

observations (true positives and false negatives). This metric is vital for our study as it indicates how well the 

model can detect dumpsites, even those that are less evident or harder to discern. The recall score is 

calculated as follows: 

                           

                                                                         True positives 

                               Recall =                                                                                                        (2)                                                                                       

                             

                                                            True positives + False negatives 

 

F1 score provides a balance between precision and recall, offering a single score that encapsulates both 

precision and recall. The F1 score is calculated as follows: 

 

                                                                        Precision × Recall 

                               F1 score = 2 ×                                                                                               (3)                                                                                       

                             

                                                                        Precision + Recall 
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6 Results 
 
The progression of the machine learning model’s performance over the course of training and validation 

phases is depicted in Figures 4 and 5, respectively. These figures provide valuable insights into the learning 

trajectory and the generalization capabilities of the model. 

As illustrated in Figure 4, the training loss consistently decreased across epochs, with minor fluctuations 

indicative of the model’s adaptation to the complexity of the dataset. Notably, by the final epoch, 

encompassing 10,000 iterations, the training loss significantly reduced to around 0.1, signifying effective 

learning from the training dataset and increasing prediction accuracy with epoch progression. 

In the realm of machine learning, training loss and epoch are key terms used to gauge a model’s learning 

progress over time. Training loss is depicted on the y axis and measures how far off a model’s predictions 

are from the actual targets. It is an indication of the error rate; lower values indicate the model is making 

more accurate predictions. The epoch is shown on the x axis and counts how many times the model has 

gone through the entire dataset during training. Each epoch offers the model an opportunity to learn from 

its errors and improve its accuracy. 

 

Figure 4: Training loss per epoch 

As shown in Figure 5, the validation loss, starting at a higher initial value of around 0.8, followed a downward 

trend similar to the training loss, albeit with more pronounced spikes. These spikes are indicative of the 

challenges faced by the model in generalizing to unseen data, suggesting moments of potential overfitting. 

Despite this, the overall downward trend in validation loss, culminating in a value close to the training loss 

by the end of the epochs, is a positive indicator of the model’s generalization ability and the quality of the 
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dataset. This convergence of training and validation loss values suggests that the model can also adapt to 

the dataset unbalance without significant overfitting or too much of a class imbalance bias.  

 

Figure 5: Validation loss per epoch 

The evaluation of the validation dataset metrics, as shown in Figures 6, 7 and 8, indicates the ability of the 

model to predict dumpsites with more accuracy, despite high variation. Precision and recall (Figures 7 and 

8) fluctuated significantly, ranging from around 0.50 to 0.70 after a few epochs. The binary F1 score (Figure 

6) combined these aspects, with values between 0.45 and 0.68. Despite these fluctuations, the general 

upward trend in these metrics suggests that the model quickly develops generalizing abilities and is very 

promising. 

The analysis of the model’s performance with the ‘easy’ dataset, which only consists of 154 dumpsite images, 

presents interesting insights. The limited number of positive samples primarily contributed to a significant 

degree of overfitting during the training. This overfitting is evident from the trends observed in the training 

loss and the highest F1 score, which remained relatively low, peaking at just around 0.36. After the initial 

epochs, the validation loss began to increase, reflecting the model’s struggle to generalize beyond the 

training data. This issue of overfitting is starkly contrasted with the results obtained when training on the full 

dataset, which includes 340 positive images, encompassing both easy and hard positive samples. The 

inclusion of a larger number of positive samples, even the challenging ones, significantly allows the model 

to learn and generalize. 
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Figure 6: Validation binary F1 score 

 

6.1 Final model results 
 
The final model, trained on a combination of the AerialWaste dataset and the ground truth data from 

Guatemala, yielded promising results. The validation dataset consisted of 208 samples, with 140 negatives 

and 68 positives. We selected the model at epoch 48, which showed the best results in terms of validation 

metrics. The metrics achieved were: 

 

• Recall: 0.68 – indicating that the model correctly identified 68 percent of actual illegal 

dumpsites. 

• Precision: 0.68 – indicating that 68 percent of the locations identified by the model as illegal 

dumpsites were indeed such. 

• F1 score: 0.68 – calculated as the harmonic mean of precision and recall. 

 

The confusion matrix for the validation dataset is presented in Table 2. This matrix offers a detailed view of 

the model’s performance, showing the number of correct and incorrect predictions for both classes. 
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Figure 7: Validation binary precision 

 
Table 2: Confusion matrix on the validation dataset (final model) 

 

 
 Predicted 

  Negative Positive 

Actual 

Negative 118 22 

Positive 21 47 

 

7 Discussion 
 
The initial results of our machine learning model for detecting illegal dumpsites in Guatemala show promising 

trends, especially in terms of the generalization capabilities indicated by the validation dataset metrics. 

However, several key considerations must be addressed to enhance the model’s robustness and 

applicability. 
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Figure 8: Validation binary recall 

In our methodology, we made a deliberate choice not to include a distinct test set due to the limited number 

of positive samples available. Creating a test set could lead to even stronger overfitting. This decision, while 

necessary under the current circumstances, does pose constraints on our ability to thoroughly assess the 

model’s performance in real-world scenarios. The test set should ideally not merely be a randomized 

selection from the overall dataset; in the context of GIS and deep learning applications, it is often more 

effective to select the test set from a distinct geographical distribution. This separation, usually achieved by 

dividing the dataset along a specific longitudinal or latitudinal coordinate, ensures that the model is evaluated 

on geographically diverse samples. Such an approach is crucial for assessing the model’s capacity to 

generalize across varied environmental conditions and characteristics of dumpsites, thereby mitigating the 

risk of overfitting to specific regional features. 

8 Future work 
 
Going forward, it would be beneficial to expand our dataset, particularly in terms of positive samples. This 

expansion would enable the creation of a distinct test set, providing a more comprehensive and realistic 

evaluation of the model’s real-world applicability and effectiveness. 

To expand the number of positives in our dataset, we could try to find and review other dumpsite datasets 

in Guatemala. We could also employ more robust labelling processes, such as using tools like Computer 

Vision Annotation Tool (CVAT) to enrich our dataset. Furthermore, incorporating inter-annotator agreement 

assessments would be advantageous in evaluating the quality of the imagery data. Inter-annotator 

agreement helps in determining the consistency and reliability of annotations provided by different 

individuals, thereby ensuring that the data used for training and testing the model is of high quality and 
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reliable. Manual interpretations and annotations of aerial images by interpreters, using tools like Google 

Earth, offer another straightforward approach. Expanding the size of the dataset is crucial for building a test 

set that provides a more realistic evaluation of the model’s performance. Additionally, addressing potential 

long-term issues like data shift due to seasonal changes is important. 

While increasing the number of positive samples has shown improvements in current image classification 

approaches, exploring alternative architectures could potentially yield even better results. For instance, 

investigating object detection models like You Only Look Once (YOLO) with transfer learning could provide 

fresh insights and enhanced accuracy in identifying illegal dumpsites. Moreover, leveraging advanced 

models such as ResNet-101, a residual network with up to 152 layers known for its depth and efficiency 

compared to earlier architectures like Visual Geometry Group (VGG), could further improve performance.24 

Another promising option is CrossFormer++,25 a pre-trained model tailored for remote sensing with 2.4 billion 

parameters, demonstrating its potential in this domain. Additionally, experimenting with transformer-based 

architectures such as SWIN Transformer (SWINT),26 Vision Transformer (ViT),27 Vision Transformer Advanced 

by Exploring Intrinsic Inductive Bias (ViTAE)28 and Vision Transformer Advanced by Exploring Inductive Bias 

for Image Recognition and Beyond (ViTAEv2),29 which are adaptable to various tasks including low-resolution 

images, could offer valuable alternatives. 

With a more robust and extensive dataset, we can envision deploying this model across Guatemala. Utilizing 

large databases such as MillionAID30,30 a comprehensive benchmark dataset with one million instances for 

remote sensing scene classification across 51 semantic categories tailored to land-use standards, would 

significantly enhance our capabilities. This broader application would enable thorough risk analysis and the 

establishment of a robust operational pipeline. Such expansion efforts would make substantial contributions 

to national environmental protection and the monitoring of illegal dumpsites. In the longer term, establishing 

a human-in-the-loop monitoring process could be highly beneficial. This approach involves utilizing the 

model to identify potential risk locations, which are then reviewed by domain experts. Beyond enhancing 

governmental effectiveness in detecting illegal dumpsites, insights from these reviews can continuously 

refine the model through iterative training processes. This iterative approach addresses challenges such as 

model decay and concept shift, ensuring sustained relevance and accuracy over time. 

 
24 Kaiming He et al., “Deep residual learning for image recognition”, arXiv:1512.03385 [cs.CV] (10 December 2015). Available at 
https://arxiv.org/abs/1512.03385.  
25 Keumgang Cha et al., “A billion-scale foundation model for remote sensing images”, arXiv:2304.05215 [cs.CV] (11 April 2023). 
Available at https://arxiv.org/abs/2304.05215.  
26 Ze Liu et al., “SWIN Transformer: Hierarchical vision transformer using shifted windows”, arXiv:2103.14030 [cs.CV] (25 March 2021). 
Available at https://arxiv.org/abs/2103.14030v2.  
27 Alexey Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image recognition at scale”, arXiv:2010.11929 [cs.CV] 
(22 October 2020). Available at: https://arxiv.org/abs/2010.11929v2.  
28 Yufei Xu et al., “ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias”, arXiv:2106.03348 [cs.CV] (7 June 2021). 
Available at https://arxiv.org/abs/2106.03348v4.  
29 Qiming Zhang et al., “ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for Image Recognition and Beyond”, 
International Journal of Computer Vision, vol. 131 (2023), pp. 1141–1162. 
30 Yang Long et al., “On creating benchmark dataset for aerial image interpretation: Reviews, guidances and Million-AID”, Papers with 
Code (22 June 2020). Available at https://paperswithcode.com/paper/dirs-on-creating-benchmark-datasets-for.  

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2304.05215
https://arxiv.org/abs/2103.14030v2
https://arxiv.org/abs/2010.11929v2
https://arxiv.org/abs/2106.03348v4
https://paperswithcode.com/paper/dirs-on-creating-benchmark-datasets-for
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Alternatively, building an application programming interface (API) for the model could allow various 

stakeholders, including governmental and non-governmental organizations, to access and utilize the tool for 

monitoring and intervention purposes. This step could contribute to a more collaborative approach in tackling 

the challenge of illegal dumpsites. The exploration of alternative remote sensing methods, such as parafoil 

drones, could help to enhance the quality of existing dumpsite images further. By doing so, we can ensure 

that the data collected is both accurate and comprehensive, thereby supporting more effective waste 

management strategies. Additionally, integrating these advanced technologies and methodologies can 

provide more detailed and actionable insights, ultimately contributing to the national efforts in environmental 

protection and illegal dumpsite monitoring. 

9 Conclusion 
 
In conclusion, this project successfully demonstrates the application of machine learning and GIS techniques 

for identifying illegal dumpsites in Guatemala, providing state-of-the-art methods for shaping and monitoring 

environmental policies. Using state-of-the-art computer vision methods both in architectures (ResNet50 and 

FPN) and training methodology (transfer learning), we have developed a binary classifier for satellite imagery 

analysis able to generalize to new areas in Guatemala. Although promising, the results highlight the need for 

a more diverse and extensive dataset to enhance model accuracy and reliability, and exploring alternative 

model architectures. Also, a future key area of improvement will be to enhance the monitoring process by 

incorporating a human-in-the-loop system for monitoring and continuous model refinement. Finally, the 

development of an API for wider interoperability is an important step forward. This project significantly 

contributes to environmental protection efforts in Guatemala and offers a state-of-the-art scalable method 

for other regions facing similar challenges. 

 

 

 

 

 

 

 

 

 

 



 

 24 

Appendix: Locations marked as positive in 2022 for illegal dumpsites but lacking 
visible evidence in satellite imagery 
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